Age, length-weight relationships and condition factors of endemic Antalya barb Capoeta antalyensis (Battalgil, 1943)

Soner Çetinkaya1,2, Rahmi Uysal1, Vedat Yegen1, Mustafa Ceylan1, Ufuk Akçimen1, Fuat Bilgin1

1 Republic of Turkey Ministry of Agriculture and Forestry, Fisheries Research Institute, Eğirdir, Isparta, Turkey
2 Republic of Turkey Ministry of Agriculture and Forestry, Mediterranean Fisheries Research, Production and Training Institute, Antalya, Turkey
3 Republic of Turkey Ministry of Agriculture and Forestry, County Directorate, Eğirdir, Isparta, Turkey

Correspondence
Soner Çetinkaya; Republic of Turkey Ministry of Agriculture and Forestry, Fisheries Research Institute, Eğirdir, Isparta, Turkey. cetinson_70@hotmail.com

Abstract
The aim of this study was to determine the length-weight, length-length relationships (LWR and LLR) and condition factors of Antalya barb Capoeta antalyensis, an endemic species to Turkey. The specimens (N = 125) were caught using the gill nets in the Sorgun Dam (Aksu, Isparta). The age of the study specimens varied between one and six years. The total length and body weight of the specimens varied from 17.7 – 36.7 cm and 57.03 – 526.91 g respectively. A negative allometric growth (b = 2.7743) was recorded for the species whereas the LWR and total length (TL) – fork length (FL) equations were W = 0.0203 × TL2.7743 (R² = 0.95) and TL = 0.402 + FL × 1.061 (R² = 0.99) respectively. The condition factor was determined for every specimen. In light of the results obtained in the study this species may be considered for aquaculture ensuring sustainable population in the wild. This study provides new information that can play an important role in the sustainable management this species.

Keywords: Endemic fish; negative allometry; LWR; LLR; condition factor; sustainable management

1 | INTRODUCTION
Fish may exhibit growth characteristics that may vary depending on the characteristics of the aquatic environment in which they live. Since the beginning of the 20th century, fisheries research has used this variability in length-weight (LWR), length-length (LLR) relationships and condition factors based on the assumption that fish of a certain length are heavier than others to compare the condition, fatness or welfare of fish (Froese 2006; Yilmaz et al. 2010). Investigating these relationships are commonly used methods in fisheries biology and population dynamics to determine the population structure and stock status of a species (Bagenal and Tesch 1978). With these relationships, it is possible to estimate the length or weight of a fish from its length using mathematical equations or to compare its populations in different waters. With the LWRs, populations can be used rationally and sustainably (Pervin and Mortuza 2008). It is also used to determine the tendency of fish growth (e.g. isometric and allometric) (Le Cren 1951; Ricker 1975). The LLRs are used in the
conversion and comparison of length values obtained by different length measurements of fish (Moutopoulos and Stergiou 2002). When only fish length data are available, fish weight and biomass can be determined using the LWR equation (Le Cren 1951; Koutrakis and Tsikliras 2003). The LLR is particularly important in achieving the desired length value (total, fork, standard) in studies using different length values (Moutopoulos and Stergiou 2002).

Around the world, 65 species belonging to the genus Capoeta have been identified in 51 countries or regions on four continents viz. Africa, America, Asia and Australia (Froese and Pauly 2019). In Turkey, 23 species of genus Capoeta are distributed in various water bodies (Yeğen et al. 2006; Fricke et al. 2007; Küçük et al. 2009; Froese and Pauly 2019) and is widely consumed as food fish due to its delicious taste. However, commercial catching of these species is very limited as this species has not systematically been commercially evaluated processing industries. While this species is defined as Endangered according to the IUCN criteria (Turan and Özcan 2009) Freyhof (2014) classified as Vulnerable. The aim of this study was to determine the seasonal variation in LWR, LLR and condition factor of C. antalyensis (Battalgil, 1943) with a view to contributing to the population management of the species. This would also shed light on the future studies on this species.

2 | METHODOLOGY

The Antalya barb C. antalyensis (Figure 1) is distributed in some parts of the Lakes Region basin, commonly available in all parts of the rivers between the Boğça Çayı Stream in the west of Antalya and the Peri Köprüsü near Manavgat (Koca 2011). This species prefers sandy and gravel beds in the river and reproduction occurs between May and June (Küçük and İkiz 2004).

The body of the species has an oval appearance. Head length is always higher than body height. The mouth is somewhat inferior and half-moon shaped. The final spiny fin rays of the dorsal fin are not well developed and can easily be bent. The caudal fin is deeply forked and has sharp edges. There are two pairs of barbels around the mouth. It differentiated apart from the Capoeta tinca species by the number of perforated scales on the lateral line (48 – 56), the number of vertebrae (43 – 45) and poor development of the dorsal fin of the last soft beam (Küçük and İkiz 2004).

In order to determine the changes in LWRs, LLRs and condition factors, a single sampling was carried out at Sorgun Dam in each of the four seasons. The gill nets of different mesh sizes (16 × 16, 20 × 20, 25 × 25, 30 × 30, 35 × 35, 40 × 40 mm) were used during sampling (Özekinci et al. 2003) to ensure catches of all age classes. A total of 125 fish specimens captured during this time including 31 in spring, 10 in summer, 23 in autumn and 61 in winter. The population of the species at the sampling site was unknown (size, structure, nutrition, reproduction etc.). Therefore, one time sampling was conducted in order ensure minimum damage to the existing population.

The age of the fish specimens was determined analysing the scales. For this purpose, the scales near the operculum, above lateral line on the left side of the fish were removed and prepared following Lagler (1966). Samples were examined using Nikon Profile Projector V-10 (Japan) and their age was determined by counting the age rings (i.e. annuli). The total length (TL), standard length (SL) and fork length were measured by standard device. Fish body weight (g) was determined using digital balance (to the nearest 0.01 g). The LWRs were determined by the following equation, \[W = aL^b \] (W, weight in g; L, total length in cm; a, constant; b, constant) (Bagenal and Tesch 1978). The LLRs were established using TL = a + FL b, FL = a + SL b, and SL = a + TL b, where a and b are constant values obtained through linear regression (Yılmaz et al. 2010). The Fulton’s condition factor was calculated using the equation \[K = 100 \times \frac{W}{L^3} \] (W, weight; L, total length; Simon and Mazlan 2008). The relative condition factor was also determined using the formula \[K_r = \frac{W}{W'} \] where \(W \) is the weight and \(W' \) is the estimated weight of the individual through LWR (Le Cren 1951).

3 | RESULTS

3.1 Length and weight distributions and age

Out of 125 specimens considered 79 were female and 43 were male. The gender of three individuals could not be calculated due to their immature gonads. The ages of the fish specimens ranged from 1 (recorded in spring) to 6 (recorded in summer) years. The lowest total length was 17.7 cm, recorded in spring whereas the largest specimen was 36.7 cm, captured in summer (Table 1). The lowest and highest body weights were 57.03 and 526.91 g respectively, recorded in spring.

3.2 LWR, LLR and condition factors

The LWR and LLR equations of the population calculated from the individuals obtained in the study are given in Table 2. The highest and lowest Fulton’s condition factors were recorded in individuals caught in spring (Table 3). The mean Fulton’s condition factor was 0.99 whereas the relative condition factor was 1.00 for all individuals.
3 | DISCUSSION

In this study the fish specimens were collected from Sorgun Dam (Aksu, Isparta) using gill nets of varying mesh sizes. The age of the specimens ranged from 1 to 6 years in which 1-year-old individuals were obtained in spring and 6-year-old fish were obtained in summer. Koca (2011) reported the age range of this species as 0 – 4 years in Aksu stream. The total length and weight of *C. antalyensis* individuals varied from 17.7 – 36.7 cm and 57.03 – 526.91 g respectively. However, the smaller individuals of the species could not be obtained due to obstacles on the banks such as trees and bushes prevented the research team from using seine-net or fyke net effective in catching small individuals. This species prefers sandy, gravel and even rocky beds in the water body with clear water. In addition to the sampling efforts of this study attempts have also been made using electro-shocker in the estuary region to obtain small individuals but they were not successful. The stream (Bağcık Brook) feeding the dam flows through a plain. It may be assumed that the small individuals were feeding in the upper parts of this stream. However, the highest length and weight recorded in this study were higher than those reported for this species earlier. The fish weight from 4.11 – 237.27 g and fork length of 6 – 27.1 cm were reported in Aksu Stream (Koca and Ölməz 2010). They also reported an asymptotic length (L∞) of 35.73 cm and asymptotic wet weight (W∞) of 837.75 g. The findings of this study (Table 1) are greater than L∞ and smaller than W∞ reported by Koca and Ölməz (2010). Ayyildiz et al. (2015) recorded the highest total length of 34 cm among individuals of the Aksu Stream. The length and weight values obtained in both studies for the *C. antalyensis* species in the Aksu Stream, where Sorgun Dam water discharges, were smaller than the findings of this study.

TABLE 1 The seasonal variation in age, length and weight (average ± SE, range) of *Capoeta antalyensis*.

<table>
<thead>
<tr>
<th>Seasons</th>
<th>N</th>
<th>Total length (cm)</th>
<th>Fork length (cm)</th>
<th>Standard length (cm)</th>
<th>Weight (g)</th>
<th>Age range (year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>31</td>
<td>24.66 ± 0.92</td>
<td>22.26 ± 0.83</td>
<td>20.35 ± 0.77</td>
<td>163.07 ± 20.00</td>
<td>1 – 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(17.7 – 36.5)</td>
<td>(15.7 - 33.2)</td>
<td>(14.5 – 30.4)</td>
<td>(57.03 – 526.91)</td>
<td></td>
</tr>
<tr>
<td>Summer</td>
<td>10</td>
<td>26.45 ± 1.91</td>
<td>23.81 ± 1.78</td>
<td>20.92 ± 1.61</td>
<td>195.20 ± 43.04</td>
<td>3 – 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(19.9 – 36.7)</td>
<td>(17.2 - 33.2)</td>
<td>(15.2 – 29.5)</td>
<td>(75.00 – 452.00)</td>
<td></td>
</tr>
<tr>
<td>Autumn</td>
<td>23</td>
<td>24.92 ± 0.44</td>
<td>22.27 ± 0.40</td>
<td>19.52 ± 0.33</td>
<td>150.28 ± 7.07</td>
<td>2 – 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(19.8 – 36.7)</td>
<td>(17.2 - 33.2)</td>
<td>(15.6 – 29.5)</td>
<td>(72.12 – 223.28)</td>
<td></td>
</tr>
<tr>
<td>Winter</td>
<td>61</td>
<td>24.73 ± 0.33</td>
<td>22.31 ± 0.31</td>
<td>20.58 ± 0.29</td>
<td>157.55 ± 6.82</td>
<td>2 – 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(19.8 – 33.1)</td>
<td>(17.7 - 30.4)</td>
<td>(16.4 – 28.2)</td>
<td>(85.21 – 341.56)</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2 The length-weight relationship (LWR) and length-length relationships in *Capoeta antalyensis*. TL, total length; FL, fork length; and SL, standard length.

<table>
<thead>
<tr>
<th>Relationship</th>
<th>Formula</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>LWR</td>
<td>W = 0.0203 × TL^0.745</td>
<td>0.9538</td>
</tr>
<tr>
<td>TL–FL</td>
<td>TL = 0.402 + 1.061 FL</td>
<td>0.9862</td>
</tr>
<tr>
<td>FL–SL</td>
<td>FL = 1.169 + 1.008 SL</td>
<td>0.9684</td>
</tr>
<tr>
<td>SL–TL</td>
<td>SL = -0.636 + 0.884 TL</td>
<td>0.9596</td>
</tr>
</tbody>
</table>

TABLE 3 Fulton’s and relative condition factors of *Capoeta antalyensis*.

<table>
<thead>
<tr>
<th>Values</th>
<th>Sample types</th>
<th>Spring</th>
<th>Summer</th>
<th>Autumn</th>
<th>Winter</th>
<th>Pooled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fulton’s condition factor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lowest</td>
<td>0.64</td>
<td>0.78</td>
<td>0.82</td>
<td>0.86</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>Highest</td>
<td>1.16</td>
<td>1.07</td>
<td>1.05</td>
<td>1.15</td>
<td>1.16</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.99</td>
<td>0.92</td>
<td>0.97</td>
<td>1.01</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>Relative condition factor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lowest</td>
<td>0.70</td>
<td>0.77</td>
<td>0.80</td>
<td>0.88</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>Highest</td>
<td>1.26</td>
<td>1.02</td>
<td>1.07</td>
<td>1.19</td>
<td>1.26</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>1.00</td>
<td>0.95</td>
<td>0.96</td>
<td>1.03</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

Among the growth parameters, the b value recorded in this study (2.7743) was similar to Innal (2014) (b = 2.946) and Ayyildiz et al. (2015) (b = 2.935) indicating a negative allometric growth while the values obtained by Koca and Ölməz (2010) and Koca (2011) (both b > 3) resembled a positive allometric growth. Female individuals were dominant proportionally in Sorgun Dam (female 63.2%, male 34.4%, undetermined 2.4%). A similar sex ratio (57.14% female and 42.86% male) was also recorded for *Capoeta capoeta angorae* individuals in the Köprüçay River (Özvərol et al. 2008). In our study, all the LWR and LLLRs showed very high level of correlations (all R² > 0.95).

The condition factors, also known as the fattening coefficient, were determined separately for individuals caught in different seasons which show little differences in fish growth across seasons. Both condition factors are quite close to ideal (K = 1). In this study, the lowest (K = 0.64) and the highest (K = 1.16) Fulton’ condition factors were obtained in spring. The mean condition factors resembled that the *C. antalyensis* individuals did not suffer from nutritional deficiency in Sorgun Dam Lake. Condition factor values obtained by Koca (2011) were higher than the present findings.

5 | CONCLUSIONS

The length and weight values obtained in this study are the highest values ever obtained for the Antalya barb *Capoeta antalyensis*. This study also reports findings from a lentic habitat whereas previous studies are based on lotic habitats. The condition factors of *C. antalyensis* indi-
viduals indicate good feeding conditions in Sorgun Dam Lake with little seasonal variation. In light of the data obtained in the study, this species may be considered a new candidate for aquaculture but sustainable population in the wild should be ensured. This study provides new information that can play an important role in the population and stock management of *Capoeta antalyensis*.

ACKNOWLEDGEMENT

This study was supported financially by Republic of Turkey Ministry of Agriculture and Forestry General Directorate of Agricultural Research and Policies (Project Number: TAGEM/HSGYAD/16/A05/P03/114).

CONFLICT OF INTEREST

The author declares no conflict of interest.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available on request from the corresponding author.

REFERENCES

Yılmaz Ş, Yazicioğlu O, Yılmaz M, Polat N (2010) Length-weight and length-length relationships, and seasonal condition factors of *Cyprinus carpio* L., 1758 and *Tinca*...

CONTRIBUTION OF THE AUTHORS

SC research design, fish sampling, laboratory work, research design, data analysis and manuscript preparation;
RU fish sampling, laboratory work;
VY fish sampling, laboratory work;
MC fish sampling, laboratory works;
UA fish sampling, laboratory works;
FB fish sampling, laboratory works.

S Çetinkaya https://orcid.org/0000-0003-2877-1248
R Uysal https://orcid.org/0000-0002-7342-9380
V Yegen https://orcid.org/0000-0001-5349-1497
M Ceylan https://orcid.org/0000-0002-3283-0637
U Akçimen https://orcid.org/0000-0003-3380-3603
F Bilgin https://orcid.org/0000-0002-2307-3611